Принцип работы эхолотов

Наличие GPS-модуля

Я имею в виду, что намного лучше, если уже будет некоторый практический опыт использования эхолота. То есть проведите несколько рыбалок с эхолотом, а затем прочитайте статью, которая, надеюсь, растолкует, зачем все эти настройки и как что работает. После этого можно уже будет осознанно поиграть с настройками или оставить все как есть со спокойной душой. Поэтому лучше включайте эхолот, катайтесь и смотрите, что он показывает. Просто включаем, едем, смотрим, после рыбалки выключаем. Но можно конечно прочитать статью, покататься и снова прочитать — так конечно будет еще.

Просто если что-то не понятно — пропускайте, со временем разберетесь. Цель статьи сократить это время. Частота в данном контексте это количество посылаемых датчиком импульсов в секунду.

Луч эхолота

На сегодняшний момент, производителями эхолотов, наиболее активно используются следующие частоты и как результат лучи: Работает примерно до метров, создает луч шириной до 60 градусов при условии установки высокого уровня чувствительности и наиболее чистую и четкую картинку. Здесь представлена схема 50 кГц луча, но принцип тот же при переключении на другие лучи — и 83 кГц, просто углы в градусах будут меняться в зависимости от того, какую частоту и чувствительность мы выбрали в меню. Для чего это нужно? Понятно, что для поиска рыбы широкий луч это хорошо, но хорошо тоже должно быть в меру. Если луч будет излишне широкий, он будет собирать вообще все подряд вокруг лодки. На экране возникнет каша из массы дуг или рыбок, но понять где это все есть или было будет весьма затруднительно.

Но это еще не. Есть еще один нюанс — если широким лучом прибор будет сканировать дно, то начнутся серьезные неточности между показаниями на экране и настоящим рельефом дна. Особенно при прохождении вдоль берегового свала. На экране в этом случае будут рисоваться колоссальные, резкие перепады глубины, которых на самом деле. Мы просто идем вдоль берегового свала как на верхней схеме с лучами. Так что узкий луч это скорее хорошо, если важен в первую очередь точный рельеф дна. Вот еще одна аналогия, чтобы легче понять.

Количество лучей в эхолоте

Представьте себе, что Вам нужно нарисовать какой-то ландшафт. У Вас есть для этого широкая, строительная кисть и тонкий карандаш. Чем будет лучше, четче и точнее рисовать? Но стоит заметить, что новые частоты и кГц и соответственно лучи уже устроены по другим принципам и при значительной ширине точность изображения дна и донных структур просто потрясающая. Но об этом ниже. Если в Вашем эхолоте есть выбор между83 и 50 частотами, именно кГц будет основной частотой в подавляющем большинстве случаев на Ваших рыбалках.

Принцип работы эхолотов

Остальные две будут только вспомогательными для специальных условий, о которых речь пойдет ниже. Еще стоит сразу предупредить, что три названные частоты одновременно в эхолоте не могут работать. Даже если в меню есть все три, работать одновременно будут только две. В этом случаи при включении обоих эхолот сам поделит экран на два окна. В одном будет картинка с одной частотой, в другом с. Какие именно частоты будут у вас работать зависит от датчика и настроек меню эхолота. Разработана для мощного пробивания толщи морской воды.

Создает луч порядка 90 градусов, который способен отображать дно на глубинах до метров.

3D-режим эхолота

Почему ее луч шире предыдущей частоты? По логике это сделано это для противодействия сбивающему свойству качки. Таким образом, этот луч глубже пробивает соленую, более плотную воду. Но думаю, вряд ли Вам пригодится эта частота даже для морской рыбалки на глубинах до метров. Он шире классического кГц неслучайно. В данном случае ширина луча позволит сгладить искажение реальной глубины в результате качки. То есть более широкий луч будет лучше отображать дно, когда судно качает в море.

Тогда, когда частота уже не справляется. Не добивает до дна, соответственно не отображает дно, по причине излишней глубины, качки или скорости движения. Мелководье, в моем понимании, — это 6м и мельче. При ее включении ширина луча возрастает до градусов при установке максимальной чувствительности. Соответственно захват дна становиться больше в два раза в сравнении с кГц лучом.

С одной стороны хорошо — больше покрытие дна, с другой стороны падает точность прорисовки дна, особенно при прохождении вдоль берегового свала, когда одна сторона луча касается верхнего края бровки, а другая нижнего. Поэтому лучше не злоупотреблять включением этой частоты без надобности. Есть смысл включать ее на откровенно мелких местах — менее 4 метров. Хотя вряд ли это добавит шансов увидеть в стороне стоящую рыбу. Скорее всего она уплывет из-под лодки до того как попадет в зону действия луча. Другое дело, когда ловим в отвес сома на квок или ставриду в море. В два раза шире луч, скорее всего, позволит увидеть снасть или рыбу, не попавшую в более тонкий конус луча кГц. И здесь есть полный смысл пробовать ее применять. Но несколько уступает в качестве. Точнее — в тонкости прорисовки деталей донных структур. С другой стороны, при быстром поиске на полной скорости разумеется, не на значительных глубинахя бы предпочел включить именно.

Потому как, при такой, существенно превышающей остальные частоте посылания импульса, картинка имеет шанс изобразиться детальнее, чем на частоте, не говоря уже о классических50, 83 кГц. На практике получается, что кГц все-таки намного чаще применяется, и включать есть смысл только либо на глубинах менее 6 метров или для тонкой прорисовки Даунсканера нижнего высокочастотного лучаи то до глубины 15 метров. Теперь подробнее про возможности новых частот Мало того что частота в два-четыре раза выше, чем классическая, привычная для нас кГц частота, так ещё и луч работающий на этой частоте имеет другую форму, плоскую, в виде лимонной дольки в разрезе.

С одной стороныузкая форма луча уменьшает площадь захват рыбы, когда лодка стоит неподвижно или Вы используете эхолот зимой на льду. С другой стороны, такая технология дает потрясающее качество изображения подводного ландшафта и рыбы в том числе. А также показывает картину происходящего прямо у дна 50см над и нижечто у классического эхолота с частотами-лучами50, 83 кГц практически не получается. Скриншот копия экрана одного и того же места разными технологиями — новой кГц и старой кГц. Причем, классический внизу снабжен встроенной, самой продвинутой технологией Бродбенд для 2Д эхолотов. У дна за свальчиком стоит толстолобик приблизительно весом от 7 до 15 кг. Хорошо видно, что обычный эхолот даже с технологией Бродбенд еле отделяет рыбу от дна картинка внизув то время как Даунсканер сверху спокойно рисует, что под рыбой еще приличное расстояние до дна. Более того, на самом свальчике имеется какой-то инородный объект, возможно донная рыба или мусор.

Что это, конкретно определить трудно, потому как донная рыба судак, сом всячески по своей натуре стараются с имитировать собой палку камень или что-то еще, но только не самого. С другой стороны, классический эхолот легче дает понять, что это именно рыба, и четкой дугой и различием цвета. На этом скриншоте, напротив, лучше видно группу толстолобиков с помощью технологии DSI картинка сверху на кГц частоте. Верхний большой левый верхний квадрат — боковые лучи. Ноль — это след от лодки. На расстоянии метров справа по борту стая толстолобиков в виде крупных точек.

Справа сверху — даунсканер на частоте кГц. Черные кляксы на экране толстолобики с края этой стаи. Справа снизу — они же на 2Д эхолоте с Бродбенсаундером. И, наконец, слева внизу GPS карта, на которой можно точно посмотреть и отметить местоположение этой стаи или найденной коряги. Стая тех же толстолобиков. На практике все проще Должен Вас обрадовать. Многие, казалось бы, непростые вопросы отпадут сами собой, как только вы включите его и начнете двигаться по водоему. Далее стоит заметить, что обучение, как я уже говорил, даже лучше проводить не от теории к практике, как рекомендуется классиками теории методики преподавания, а наоборот. Затем у нас появляются конкретные вопросы, дальше в источниках или при беседе со специалистами мы ищем на них ответы. Снова практика, снова вопросы и снова ищем ответы. Поэтому, даже лучше, если Вы уже какое-то время попрактиковались с эхолотом и теперь разбираетесь, читая эту статью.

Если что-то не понятно особо не расстраиваетесь, уверяю Вас, со временем после определенной практики это будет элементарно просто и понятно. Просто пропускайте глазами, читая дальше, и перечитайте это же где то через рыбалок. Но для начала все-таки стоит понять основы. Принцип работы эхолота — максимально коротко Важный вопрос, рекомендую напрячься и вникнуть. Это поможет в дальнейшем успешней понимать его изображения.

Основные характеристики эхолотов

Тем более все очень просто: Итак, датчик излучателя посылает звуковые щелчки импульсы в сторону дна. Импульс на своем пути встречает разные предметы и наконец, достигает дна и отражается обратно наверх к датчику излучателю, который теперь его принимает обратно. По пути ко дну и обратно импульс собрал разную информацию: Голова, точнее ее процессор, обрабатывает собранную им информацию и выводит на дисплей в виде движущейся, графической картинки.

03.10.2019 18